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Over the last years, new medical imaging modalities were 

developed to help detect, diagnose and monitor different 

illnesses. Historically, the interpretation and analysis of the 

images obtained with these methods was conducted by 

trained radiologists or physicians, but, in recent years, with the 

development of more and more sophisticated computational 

image analysis methods and machine learning techniques, 

computer-aided medical image analysis finds its way into the 

clinical practice [1]. To highlight anatomical structures or 

pathological changes in images and therefore make the 

diagnostic process easier, more accurate and more efficient, 

segmentation is the method to go with [2]. In the last 10 years, 

the number of papers describing automatic heart and vessel 

segmentation in medical images has greatly increased, 

showing that with the improvement over classical methods 

and the significant increase in computational capabilities, the 

popularity of automated cardiovascular image analysis has 

also increased [3,4]. Since pathologies of the cardiovascular 

system, like dissections and aneurysms, can be life-

threatening and require prompt attention, automatic 

segmentation can be a helpful tool to promptly identify an 

abnormal anatomy. To simplify this process, we developed a 

3D deep neural network that consists of an encoder-decoder 

network together with a self-attention block and evaluated the 

role of the attention block. 

The overall dataset consists of 56 CTA-scans from three 

different public sources with ground truth segmentations and 

includes aortas with abdominal aortic aneurysms and aortic 

dissections [5]. We first re-sampled the images to a uniform 

voxel size, cropped the images around the center of the image 

and subsequently windowing was applied to remove 

unnecessary information. After that, the images were 

normalized and patches were extracted. The suggested 

network models are based on the U-Net architecture [6] and 

incorporate the Channel and Spatial Attention Module (CSAM) 

proposed by Mou et al. [7] that is inspired by the Dual 

Attention Network (DANet). As bottom block, either a 

convolution block was used, or a spatial and a channel 

attention module (CSAM). We tested 6 different networks, 

named after their respective number of filters. As an example, 

the U-Net16 with the Channel and Spatial Attention Module 

(CSAM) is visualized in Fig. 1. Six images of the dataset were 

set aside as test data, and the remaining data, 250 patches, 

was split into 30% validation data and 70% training data. The 

network was trained on a PC with a Nvidia GeForce RTX 2070 

with 8GB of video memory, using the Adamax-optimizer (β1 = 

0.9, β2 = 0.999 and ε = 0.01) and a modified Dice-loss, where 

the loss is multiplied by a large negative number to improve 

the learning process. The initial learning rate was set to 0.001 

and was reduced by a factor of 0.1 after 10 epochs without 

validation loss improvement. The training was stopped early 

after 20 epochs without validation loss improvement.

The training of the networks was done in 38 to 66 epochs in a 

time of 3-8 hours. Only the weights of the model at minimal 

validation loss were saved and used for predictions. The 

proposed methods yielded the results described in Table 1 for 

the test dataset. Fig. 2 shows exemplary segmentation results.

Generally, the classical U-Nets preformed better without the 

Spatial and Channel Attention Module, suggesting that this 

attention mechanism might not work well for AVT 

segmentation. All the networks delivered good segmentations 

in at least three of six cases, although in some cases the 

networks delivered poor results, possibly because of differing 

image parameters like image intensity at the aorta. These 

models were developed with low computational requirements,  

therefore the model could be tested with increased patch size, 

network width and depth and higher number of filters in the 

future. A challenge was the small amount of available data, 

therefore a massive dataset of similarly acquired CTA scans 

might improve performance.

Network Image D1 D3 R1 R3 K1 K3

U-Net 16 Dice 0.889 0.189 0.607 0.794 0.840 0.589

HD 10.06 55.25 43.04 6.59 4.47 20.05

U-Net 16 + CSAM Dice 0.856 0.541 0.613 0.830 0.828 0.485

HD 5.68 17.3 9.59 5.72 5.06 47.34

U-Net 176 Dice 0.883 0.369 0.897 0.883 0.847 0.836

HD 9.95 41.94 11.94 1.62 2.93 17.16

U-Net 176 + 

CSAM
Dice 0.877 0.318 0.585 0.779 0.803 0.749

HD 9.48 33.35 12.48 6.97 5.12 19.04

U-Net 352 Dice 0.843 0.043 0.715 0.867 0.882 0.821

HD 10.37 68.99 13.73 3.72 2.63 17.39

Table 1: Segmentation results.

Fig. 2: The images show from left to right the ground truth, 

the segmentation results and the difference between 

segmentation and ground truth of images R3 and D3 as 

exemplary results of the network U-Net16+CSAM.

Fig. 1: Structure of the proposed neural network model.
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Some of the aortic vessel tree shapes are used in MedShapeNet (https://medshapenet.ikim.nrw/).
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